
Desi R. Ivanova, 24 March 2021

Paper review: Deep Q-Networks
“Playing Atari with Deep Reinforcement Learning” 
Mnih, Kavukcuoglu, Silver, Graves, Antonoglou, Wierstra, Riedmiller  
NIPS Deep Learning Workshop 2013

Deep/Prob seminar

Overview

• The first deep learning model to learn control policies directly from high-
dimensional sensory input (i.e. images) using reinforcement learning.

• Prior to this work: hand-engineered features, incorporating significant prior
knowledge about the problem with simple (e.g. linear) value functions

Source: Mnih et al. 2013

The RL problem

At each time step :

• Agent chooses an action from a set of
legal actions (is small,
between 4 and 18)

• Emulator, , modifies internal state

• Observation vector representing
current screen

• Agent receives a reward

• Depends on the game, can be very

sparse

t

at
𝒜 = {1,…, K} K

E ϵt

xt ∈ ℝd

rt

ϵt−1

xt−1

at−1

ϵt

xt

at . . .

States are unobserved

. . .

Partially observed MDP

ϵt+1

xt+1

p(ϵt |ϵt−1, at−1) p(ϵt+1 |ϵt, at)

p(at |ϵt)

The RL problem

• Consider sequences of actions and
observations,

• Each sequence is considered as a
distinct state

• Large MDP but fully observed and finite

• Goal: select actions to maximise
(discounted) future reward defined as  

st = x1, a1, x2, …, at−1, xt

st ∈ 𝒮

Rt =
T

∑
t′ =t

γt′ −trt′

st−1

at−1

st

at . . .
. . .

st+1

Fully observed (finite) MDP

p(at |st)p(at−1 |st−1)

p(st |st−1, at−1) p(st+1 |ϵt, at)

Q-learning
Maximising future rewards

• Has been around for a long time but not combined with DL before

• Q-function maps {state, action} pairs to future reward 

• Optimal Q-function defined as the max expected reward achievable by any policy after
observing state sequence and taking an action : 
  

• Obeys the Bellman equation  
 

π
s a

Q*(s, a) := max
π

𝔼[Rt |st = s, at = a, π]

Q*(s, a) = 𝔼s′ [r + γ max
a′

Q*(s′ , a′) |s, a]

  

Q : 𝒮 × 𝒜 → ℝ

(s, a) ↦ R

Under conditions (usually not
satisfied) value iteration algorithms

converge to the optimal Q*

Approximate with a NNQ*

• , where are weights of a neural network, called the Q-
network

• Several options to parametrise (discussed later)

• Q-network is trained by minimising a sequence of loss functions  
 
  
 
 
where

Q*(s, a) ≈ Q(s, a; θ) θ

Q

Li(θi)

Li(θi) = 𝔼s,a∼ρ[(yi − Q(s, a; θi))2]

yi = 𝔼s′ [r + γ max
a′

Q(s′ , a′ ; θi−1) |s, a]
BUT: the target depends on

the network weights

“Almost” like supervised
regression problem can
autodiff with respect to

→
θ

“behaviour distribution” (in this case
it is -greedy) ϵ

Main problem
DL vs RL

• DL assumes data samples are iid.

• In RL: sequence of highly correlated states (think consecutive images in an
Atari game); and data distribution changes as policy changes.

• Solution: Experience replay (Long-Ji Lin, 1993)

• Store agent’s experiences (transitions) at each time step

• Replay memory: containing experiences over many episodes

• is updated periodically

et := (st, at, rt, st+1)

𝒟 = e1, …, eN

𝒟

Deep Q-learning

Source: Mnih et al. 2013

FIFO queue

-greedy
strategy
ϵ

Each consists of 4 frames

 RGB to grayscale,

downsampling, cropping,

xt
ϕ :

batch size=32

1million frames

Annealed from 1 to 0.1
“Frame-skipping”: agent
sees and select actions

on every framekth

Second “target network” added
in a later version of the paper

https://web.stanford.edu/class/psych209/Readings/MnihEtAlHassibis15NatureControlDeepRL.pdf

Parametrising Q and NN Architecture

• One option is to input state and action, output
 (scalar)

• Computational cost scales linearly with
number of possible actions

• Instead: input state only, output a vector length

Q(s, a)

K

State NN

Q(s, a1)

Q(s, a2)

Q(s, aK)

. . .

Q-Network

• Convolutional NN taking 4 consecutive
preprocessed images as inputs ()

• 2 convolutional layers with ReLU activations

• Fully connected layers with ReLU activation

• Output layer consisting of a single neutron
per valid action (between 4 and 18 for
different games)

• The same architecture and hyper-
parameters are used in all 7 games, no
game-specific information was
incorporated.

84 × 84 × 4

Visualising the Value Function

Source: Mnih et al. 2013

Evaluation results

Source: Mnih et al. 2013

