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Overview

• The first deep learning model to learn control policies directly from high-
dimensional sensory input (i.e. images) using reinforcement learning.


• Prior to this work: hand-engineered features, incorporating significant prior 
knowledge about the problem with simple (e.g. linear) value functions

Source: Mnih et al. 2013



The RL problem

At each time step :


• Agent chooses an action  from a set of 
legal actions  (  is small, 
between 4 and 18)


• Emulator, , modifies internal state 


• Observation  vector representing 
current screen 


• Agent receives a reward 

• Depends on the game, can be very 

sparse
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The RL problem

• Consider sequences of actions and 
observations, 


• Each sequence  is considered as a 
distinct state


• Large MDP but fully observed and finite 


• Goal: select actions to maximise 
(discounted) future reward defined as  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Q-learning
Maximising future rewards

• Has been around for a long time but not combined with DL before


• Q-function maps {state, action} pairs to future reward 

• Optimal Q-function defined as the max expected reward achievable by any policy   after 
observing state sequence  and taking an action : 
                           
                              


• Obeys the Bellman equation  
 
                               

π
s a

Q*(s, a) := max
π

𝔼[Rt |st = s, at = a, π]

Q*(s, a) = 𝔼s′ [r + γ max
a′ 

Q*(s′ , a′ ) |s, a]

  
          
Q : 𝒮 × 𝒜 → ℝ

(s, a) ↦ R

Under conditions (usually not 
satisfied) value iteration algorithms 

converge to the optimal Q*



Approximate  with a NNQ*

• , where  are weights of a neural network, called the Q-
network


• Several options to parametrise  (discussed later)


• Q-network is trained by minimising a sequence of loss functions  
 
                              
 
 
where 

Q*(s, a) ≈ Q(s, a; θ) θ

Q

Li(θi)

Li(θi) = 𝔼s,a∼ρ[(yi − Q(s, a; θi))2]

yi = 𝔼s′ [r + γ max
a′ 

Q(s′ , a′ ; θi−1) |s, a]
BUT: the target depends on 

the network weights

“Almost” like supervised 
regression problem  can 
autodiff with respect to 

→
θ

“behaviour distribution” (in this case 
it is -greedy) ϵ



Main problem
DL vs RL

• DL assumes data samples are iid. 


• In RL: sequence of highly correlated states (think consecutive images in an 
Atari game); and data distribution changes as policy changes.


• Solution: Experience replay (Long-Ji Lin, 1993)


• Store agent’s experiences (transitions) at each time step 


• Replay memory:  containing experiences over many episodes


•  is updated periodically

et := (st, at, rt, st+1)

𝒟 = e1, …, eN

𝒟



Deep Q-learning

Source: Mnih et al. 2013
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Each  consists of 4 frames

 RGB to grayscale, 

downsampling, cropping, 

xt
ϕ :

batch size=32

1million frames

Annealed from 1 to 0.1
“Frame-skipping”: agent 
sees and select actions 

on every  framekth

Second “target network” added 
in a later version of the paper

https://web.stanford.edu/class/psych209/Readings/MnihEtAlHassibis15NatureControlDeepRL.pdf


Parametrising Q and NN Architecture

• One option is to input state and action, output 
 (scalar)


• Computational cost scales linearly with 
number of possible actions


• Instead: input state only, output a vector length 
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Q-Network

• Convolutional NN taking 4 consecutive 
preprocessed images as inputs ( )


• 2 convolutional layers with ReLU activations


• Fully connected layers with ReLU activation


• Output layer consisting of a single neutron 
per valid action (between 4 and 18 for 
different games)


• The same architecture and hyper-
parameters are used in all 7 games, no 
game-specific information was 
incorporated.

84 × 84 × 4



Visualising the Value Function

Source: Mnih et al. 2013



Evaluation results

Source: Mnih et al. 2013


