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Overview

Figure 1: Screen shots from five Atari 2600 Games: (Left-to-right) Pong, Breakout, Space Invaders,
Seaquest, Beam Rider

Source: Mnih et al. 2013

* The first deep learning model to learn control policies directly from high-
dimensional sensory input (i.e. images) using reinforcement learning.

* Prior to this work: hand-engineered features, incorporating significant prior
knowledge about the problem with simple (e.g. linear) value functions



The RL problem

At each time step t: Partially observed MDP

» Agent chooses an action g, from a set of

legal actions &/ = {1,..., K} (Kis small, y \ y \ \ \

between 4 and 18)
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« Emulator, E, modifies internal state ¢,

€r—1
» Observation x, € | 4 vector representing .
current screen

States are unobserved
» Agent recelves a reward r,

 Depends on the game, can be very
sparse



The RL problem

» Consider sequences of actions and Fully observed (finite) MDP
observations, s, = X, a, Xy, ..., a,_1, X,
» Each sequence s, € & is considered as a Pla; [ 5i-) P“V
distinct state - AN AN
| | ’ St >
* Large MDP but fully observed and finite s |5 1) PG5, |€n )

 Goal: select actions to maximise
(discounted) future reward defined as
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Q-learning

Maximising future rewards

 Has been around for a long time but not combined with DL before

* Q-function maps {state, action} pairs to futurereward Q: 5 X« - R
(s,a) » R

* Optimal Q-function defined as the max expected reward achievable by any policy 7 after
observing state sequence s and taking an action a:

O*(s,a) := max E [Rt\st = s5,a, = d, 71']
T

* Obeys the Bellman equation

Under conditions (usually not
O*(s,a) = —S,[r + y max O*(s’,a’) | s, a] satisfied) value iteration algorithms
a’ converge to the optimal OQ*




Approximate O* with a NN

e O*(s,a) = Q(s,a;0), where @ are weights of a neural network, called the Q-

network

+ Several options to parametrise Q) (discussed later)

 Q-network is trained by minimising a sequence of loss functions L/(6;)

where y; =

“*Almost” like supervised

L(0) = =5 a~p [(yi — (s, a; ‘9,'))2] regression problem— can

autodiff with respect to @
. “behaviour distribution” (in this case
—S,[F + 4 ma}X Q(S , A, Hi—l) ‘ S, Cl] it is e-greedy)
a

BUT: the target depends on
the network weights



Main problem
DL vs RL

DL assumes data samples are iid.

* |In RL: sequence of highly correlated states (think consecutive images in an
Atari game); and data distribution changes as policy changes.

* Solution: Experience replay (Long-Ji Lin, 1993)
» Store agent’s experiences (transitions) at each time step e, := (s,, a,, 1, 5, 1)
 Replay memory: &Y = ¢, ..., ey containing experiences over many episodes

« I is updated periodically



Deep Q-learning

Algorithm 1 Deep Q-learning with Experience Replay

Tmillion frames

<«—Initialize replay memory D to capacity /V

Initialize action-value function () with random weights

Second “target network” added

for episode = 1, M do

Initialise sequence s;1 = {x1} and preprocessed sequencec

» in a later version of the paper

p1 = ¢(s1) "| Each X, consists of 4 frames

“Frame-skipping”: agent With probability € select a ran

sees and select actions [«— otherwise select a; = max, Q*(&(s;), a; )
on every k" frame

¢ : RGB to grayscale,

fort=1,7do /'g Annealed from 1 to 0.1
om action ay

. €-greedy downsampling, cropping,

batch size=32

strategy

Execute action a; in emulator and observe reward r; and image ;. 1
Set $;11 = S¢, At, Tyq and preprocess O 1 = O(S¢a1)

FIFO queue [«— Store transition (¢y, a¢, 7+, ¢¢11) in D
Sample random minibatch of transitions (¢, a;,7;, ¢;+1) from D

- Set . — T for terminal ¢;1
J r; +ymaxy Q(¢,+1,a’;0) for non-terminal ¢ ;1
Perform a gradient descent step on (y;, — Q(@;, a;; «9))2 according to equation |3
end for
end for

Source: Mnih et al. 2013


https://web.stanford.edu/class/psych209/Readings/MnihEtAlHassibis15NatureControlDeepRL.pdf

Parametrising Q and NN Architecture

* One option is to input state and action, output * Convolutional NN taking 4 consecutive
(O(s, a) (scalar) preprocessed images as inputs (84 X 84 X 4)
* Computational cost scales linearly with » 2 convolutional layers with ReLU activations

number of possible actions

_ * Fully connected layers with RelLU activation
 Instead: input state only, output a vector length K

* QOutput layer consisting of a single neutron
per valid action (between 4 and 18 for

Q-Network

O(s, a;) different games)
/ * The same architecture and hyper-
parameters are used in all 7 games, no
JUCRT) game-specific information was
Incorporated.

(s, ag)




Visualising the Value Function
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Figure 3: The leftmost plot shows the predicted value function for a 30 frame segment of the game
Seaquest. The three screenshots correspond to the frames labeled by A, B, and C respectively.

Source: Mnih et al. 2013



Evaluation results

B. Rider | Breakout | Enduro | Pong | Q*bert | Seaquest | S. Invaders
Random 354 1.2 0 —20.4 157 110 179
Sarsa [3] 996 H.2 129 —19 614 665 271
Contingency [4] 1743 0 159 —17 960 723 268
DOQN 4092 168 470 20 1952 1705 581
Human 7456 31 368 —3 18900 28010 3690
HNeat Best [8] 3616 D2 106 19 1800 920 1720
HNeat Pixel [8] 1332 4 91 —16 1325 800 1145
DQN Best 5184 225 661 21 4500 1740 1075

Table 1: The upper table compares average total reward for various learning methods by running
an e-greedy policy with e = 0.05 for a fixed number of steps. The lower table reports results of
the single best performing episode for HNeat and DQN. HNeat produces deterministic policies that
always get the same score while DQN used an e-greedy policy with € = 0.05.

Source: Mnih et al. 2013



